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We show that a recent publication by Liron & Barta (1992) concerning a single-layer 
boundary integral equation for the tractions is mathematically equivalent to Karrila & 
Kim's (1989) Riesz method. In actual computational schemes, the second viewpoint is 
preferable since the integral operator has a spectral radius less than one and even large 
problems can be solved by fast iterative methods. 

The standard boundary integral representation for the Stokes equations for an 
incompressible Newtonian fluid of viscosity p, 

- v p + p v = v  = 0, v * v  = 0, (1) 

is v(x> = -'I 8 v  s f(<).B(x-S)dS(5)+;$ S K(X,<).%(<)dS(<), (2) 

(see Happel & Brenner 1983 ; Youngren & Acrivos 1975). In the integral representation, 
x is a point of interest in the fluid domain and < is a (dummy) variable for integration 
over the surface S that bounds the fluid domain. The surface densities appearing in the 
two integrals (the integrals are known as the single-layer and double-layer potentials) 
correspond to surface velocities u, and surface tractionsf= a-n for the stress field n. 
Our convention for the surface normal n is that it points into the fluid domain (so that 
it points out of the particle in particulate flows). The kernels 9 and K are proportional 
to the fundamental solution of the Stokes equation and its tractions. Explicitly, we 
have 

For disturbance flow fields of a particle submerged in an ambient field vm(x), the 
double-layer term can be evaluated analytically to yield the simpler equation that uses 
just a single layer over the particle surface S, 

V ( X )  - v""(x) = - f(<) * 9 ( ~  - 5)  dS(5) (X E S ) .  (4) 8 v  -'I s 

We next apply the Newtonian constitutive equation to (4) and evaluate the tractions 
by dotting with n. The result is: 

f ( x ) + ~ ~ K * ( x , c ) , f ( c ) d S ( < )  = 2fY-4 (XES), ( 5 )  

f Permanent address : Instituto de Mecanica de Fluidos, Universidad Central de Venezeula, 
Caracas, Venezuela. 
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where the kernel of the adjoint operator is as usual, K$(x, 5) = Kj,(g, x). Since equation 
(5 )  is incomplete (as shown by Odqvist (1930), the null space of 1 +X*  has dimension 
six for the single particle problem) Liron & Barta augment it with six auxiliary 
conditions, 

+$(<)dS(C) = 4 fsce Xf(<)),dS(t) = q (i = 1,2,3), (6)  

where F and T are the hydrodynamic force and torque exerted by the fluid on the 
particle. It can be shown rigorously that these six conditions are necessary and 
sufficient to define a unique projection off on N(1+ X* )  (Power & Miranda 1987). 

At first glance, this approach appears to be different from the completed double- 
layer boundary integral equation of Power & Miranda (1987) and Karrila & Kim 
(1989) and Karrila, Fuentes & Kim (1989) and this is so claimed in Liron & Barta 
(1992). Ingber & Mondy (1993) have also made similar comments in their work with 
a related single-layer representation. However, it can be shown that the Riesz method 
for extracting the tractions from the completed double-layer representation, first 
presented by Karrila & Kim (1989), gives a boundary integral equation that is 
mathematically equivalent to that in Liron & Barta. For the sake of brevity, we omit 
the mathematical details given in chapter 17 of Kim & Karrila (1991) and go directly 
to the final result ; the completed double-layer boundary integral representation yields 

as the governing equation for the tractions on a particle moving through a quiescent 
fluid with known force F and torque T. The repeated indices j imply summation over 
1,2,3. Also, S is the surface area of the particle and the Zj are moments of inertia about 
the coordinate axes, 

The sum over 1 is shown explicitly to emphasize the structure of the equation, namely 

The six vector functions, # ( I ) ,  are solutions of (1 +X)4 = 0. By direct inspection, we 
see that these terms correspond to the forces and torques on the right-hand side, by 
precisely the six auxiliary equations of Liron & Barta. However, equation (7), left as 
is, is the most efficient way of using the auxiliary conditions because it has Wielandt 
deflations of the six largest eigenvalues of X ,  an essential step in the iterative solution 
for very large systems. The deflate-and-iterate scheme maps naturally onto scalable 
parallel computer architectures as shown in Fuentes & Kim (1992). Given that the 
auxiliary conditions or the torque are used in a non-trivial fashion, it is unlikely that 
we would have arrived at this without the mathematical viewpoint of the completed 
double-layer formulation. 
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Finally, for the original inhomogeneous problem, equation (9, it is still 

advantageous to tackle the integral equation with the deflate-and-iterate strategy: 

For the important case of multiple particles of arbitrary shape in a bounded domain 
also of arbitrary shape (e.g. sedimentation of A4 particles inside a container), these 
ideas still apply: the 6 M +  1 auxiliary conditions (the force and torque on M particles 
and the no-flux condition through the container surface) can be incorporated as 
Wielandt deflations of the integral operator. Readers interested in the mathematical 
details are directed to chapter 17 of Kim & Karrila (1991). 
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